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Abltnct-An analysis is presented for determining the buckling load of triangular lattice columns with
combined local and overall imperfections. For the case where the imperfections are deterministic and
uniform, the nonlinear problem is solved in terms of quadratures. The resulting buckling loads are shown to
compare favorably with the predictions of a straightforward single-term Ritz approximation. The Ritz
approach is used to derive estimators for the mean and standard deviation of the buckling load for the
situation where the local imperfections are stochastic. The resulting estimators are shown to be valid by
comparing their results with those obtained by a Monte Carlo simulation.

I. INTRODUCTION
Efficiently designed compression columns for carrying small loads tend to be slender and to be
built up of lattice members which are themselves slender. Such columns are known to be
sensitive to initial imperfections. A slight curvature in the overall centerline, for example,
causes the compressive end load to induce increased loads in the local members. The result is
premature crippling of those local members. On the other hand, local imperfections of the cross
section produce a reduction of the effective column bending stiffness and thereby induce
premature column buckling. Clearly the proper design of such slender lattice columns must take
into account the simultaneous effects of local and overall imperfections.

The problem of imperfection sensitivity of slender columns has received a great deal of
attention in the past. However, most studies have dealt only with imperfections in the overall
centerline of the column. Only relatively recently has the problem of local imperfections in
columns been treated. In a study by van der Neut[1], the effects were determined of combined
local and overall deterministic imperfections on the buckling load of a column built up from
thin plates. Crawford and Hedgepath [2] investigated the effects of deterministic local imper
fections on the buckling of lattice columns and sandwich panels.

The important problem of combined local and overall imperfections in lattice columns has
been neglected. Furthermore, those imperfections that arise from material or fabrication
variations (as opposed to deterministic environmental effects such as lateral loading and
thermal gradients) tend to be random in nature. While such random components in the overall
imperfections can be made much less important than the deterministic components by careful
fabrication, the local imperfections often remain predominantly random in spite of such efforts.
Therefore, proper design requires the treatment of combined effects in a statistical manner.

Among the many statistical analyses of imperfection sensitive columns, the majority are
concerned with the buckling of a simple uniform column with an initial centerline deflection
which is random in some way. In an early study of this problem, Boyce [3] considered a simple
uniform column with an initial deflection in the form of a stationary random function of
position along the column. Fraser and Budiansky[4], Amazigo, Budiansky and Carrier [5],
Amazigo[6] and Videc and Sanders[7] have applied various methods to obiain asymptotic
expressions for the buckling load of a uniform column with stationary random initial deflections
and resting on a nonlinear elastic foundation. Bernard and Bogdanoff[8] considered a uniform
column with random initial deflections in two directions and a random initial twist. Jacquot[9]
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applied a Green's function technique to a uniform column with nonstationary random initial
deflections. Roorda [10] considered an ensemble of uniform columns with initial deflection in
the form of a half sine wave, and with eccentrically applied load. The amplitudes of initial
deflections and load eccentricities were considered to be jointly random variables. None of the
studies just cited considers the effects of local imperfections.

The primary objective of this paper is the analysis of the combined effects of random local
imperfections and deterministic overall imperfections on the buckling load of triangular lattice
columns. In a preliminary deterministic analysis, the combined effects of local and overall
imperfections on the buckling load are calculated for a broad range of imperfection amplitudes.
In the more general case of random local imperfections, estimators for the mean and standard
deviation of the random buckling load are developed. These estimators are shown to provide
an accurate basis for predicting the minimum 3 - 0" (99.9%) buckling load.

2. FORMULATION

Consider the simply supported triangular lattice column of length L shown in Fig. 1. The
column consists of three uniform longerons located on a circle of radius R about the column's
center. Each longeron has cross-sectional area A and minimum bending modulus EI. The
column is divided into bays of length I ~ L by an assemblage of battens and diagonals that
stabilize the cross section and provide shear stiffness.

For the purposes of the present study, the effects of cross-sectional and transverse-shear
deformatiol}s are ignored. Then the geometry of the deformed column is defined by the location
of its centerline which is coincident with the center of each triangular batten assembly.
Furthermore, the familiar assumptions of elementary engineering beam theory apply.

If a compressive load P is applied to a perfect column, buckling will occur when P equals
the classical buckling load Pc, which is the smaller of the local buckling load P, and the overall
buckling load PE where

(1)

(2)

For loads smaller than Pc, the column remains straight, both locally and overall. Bifurcation
occurs at the buckling load, Pc.
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Fig. I. Triangular lattice column and coordinates.
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For an imperfect column, on the other hand, the column deflects laterally as the compres
sive load is increased. If both local and overall imperfections are present, the process continues
until the compressive load reaches a maximum value; further compression of the column
produces further lateral deflection but a decrease in the axial compressive load. In this paper,
the maximum load so obtained is defined as the "buckling" load even though buckling, in the
bifurcation sense, never occurs. The objective of this analysis is to calculate that buckling load.

Referring to Fig. I, let z be the axis which joins the column ends, and let x and y be axes
which are orthogonal to z and aligned as shown. Let the longerons be numbered I, 2, 3 as
shown.

Let u(z) and v(z) be the centerline deflection in the x and y directions, respectively. Let
uo(z) and vo(z) locate the initial deformed centerline before the application of the compressive
load. Then the curvature relations may be expressed as

d2u(z) 2£I(z) - [£2(Z) +£3(Z)] +d2uo(z)
dT=- 3R <IT
d2v(z) _ £2(Z) - £3(Z) +d2vo(z)
dT- y(3)R {iT

(3)

(4)

where £;(z) is the unit shortening of the ith longeron (i = 1,2,3).
In developing these curvature relations it has been assumed that the bay length, I, is

infinitesimal in comparison with the overall column length, L, so that the unit shortening £,(z)
may be treated as a continuous variable. Of course £;(z) is actually a discrete variable, being
constant within each bay of the column. The value of £;(z) in this formulation is defined as the
unit shortening of the ith longeron in a generic bay whose center is located at position z along
the column axis. In the limit as IIL ~ 0 the curvature relations become exact.

Let p,(z) be the compressive load in the ith longeron in the bay located at position z. Then,
requiring the column to remain in static equilibrium it may be shown that

P.(z)=(PI3)[1+2u(z)IR] 1
pdz) = (PI3)[1- u(z)IR =+ v(z)y(3)IR].

Let the local imperfection of the ith longeron in the bay located at z be in the form of a half
sine wave with amplitude ai(z). Furthermore, assume that each longeron deflects as if it were a
simply supported column of length l. Then the unit shortening can be obtained as

.( ) =...!i (3Pi(Z) + a/(z)A {[I- 3Pi(z)]-2 -I})' .= 123
£, z 3EA PI 41 PI ,I, , (5)

where the second term represents the unit shortening due to the lateral deflection induced by
the axial load.

Equations (3H5) provide a set of second-order nonlinear differential equations for the
centerline deflections u(z) and v(z) as functions of the compressive load P, overall imper
fections uo(z) and vo(z), and local imperfections a;(z). The appropriate boundary conditions are

u(O) = v(O) = u(L) = v(L) = O. (6)

Nondimensionalization
In order to reduce the number of parameters appearing in the governing equations and to

facilitate numerical solution, the following nondimensional quantities are introduced:

(= zlL; ~= ulR; T/ = vIR;

E; = 3EA£;/PI ; Pi = 3p;/P,;

P= PIP,; 8; = (All)I/2ai.

(7)
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Equations (3H5) become
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d2~ + 2 P, (U1 - E2 - E3) _ d2~0]dC 1T PE 6 - d(2

~+ 2 P, (E3-E2)=d2~0
d( 1T PE 2y3 d(

E; = Pi +8?[(I- Pi)-2 - Il/4; i = 1,2,3

PI = P(I + 2~); P2.3 = P(I- ~ + l1y3)

(8)

(9)

(10)

and the boundary conditions are

~(O) = 11(0) = ~(I) = 11(1) = O. (II)

3. ANALYSIS FOR UNIFORM DETERMINISTIC IMPERFECTIONS

Considered in this section are the combined effects of local and overall deterministic
imperfections on the buckling load of the lattice column. It is assumed that the overall
centerline of the column has an initial imperfection in the shape of a parabola. It is further
assumed that this parabola is aligned along the worst-case direction in which longeron "I" is
most highly compressed as shown in Fig. 1. Thus 110 =O. Let the initial center deflection be

Then

uo(L/2) =RI1/Y2. (12)

is a constant for all (. Note that the imperfection amplitude 11 is expressed here in terms of the
column radius of gyration in order to preserve similarity with the treatment of the local
imperfections.

The local imperfection amplitudes 8; are assumed to be uniform over the length of the
column and the same for all longerons. Therefore

(i = 1, 2, 3) (13)

where 8 is constant.
With these assumptions, the column deflects only in the x-direction and the boundary-value

problem for the nondimensional centerline deflection becomes

~ + 1T 2 P, {p~ + 8
2

[1 - P(I + 2~>r2 - 8
2
[1- P(I- ~>r2}= - 4y(2)11

d( PE 12 12

~(O) =~(I) =O. (14)

For the special case of a perfect column with 8 =11 =0, this boundary-value problem reduces to
the familiar problem which governs Euler buckling. In that case, of course the solution ~«)

would be a half-sine wave over the column length. For an imperfect column with nonzero 8 and
11, the solution is expected to be qualitatively similar; the centerline deflection has its maximum
at (= 1/2 and decreases monotonically and symmetrically to zero at the ends.

Multiplying the first of eqns (14) by dSd', integrating, solving the results for d'/d~, and
integrating with respect to ~ from ~ =0 to the midspan value l yields an integral expression for
the half-length of the column, which may be expressed as

! = 1. (ppjp)Jl2 (i [f({) - f(l>r I/2d~
2 1T Jo (15)
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f(~) =- 8y'2 PE 11~ - p{J. - 8
2

_ {II - PO + 2~)rl +2[1 - P(l- m-I
}. (6)

17'2 PI 12P

For a given maximum deflection l of the column centerline. imperfection amplitudes 8 and A.
and geometric parameter PElP" eqn (15) may be solved by numerical techniques for the
corresponding compressive load P. The load-deflection curve for the column may then be
generated by solving for the values of the load P which correspond to successively increasing
mid-span deflections l The buckling load Pb for the imperfect column is defined as that load
which corresponds to the peak in the load-deflection curve. As an illustration, several load
deflection curves obtained by such an exact simulation of the column behavior are shown in
Fig. 2. Each curve corresponds to a lattice column with different geometric properties but with
the same nondimensional imperfection amplitudes 8 and A. The buckling loads Pb are identified
in the figure with enlarged circles.
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Fig. 2. Example load-deflection curves. The circle symbols identify the buckling loads.

Once the compressive load P has been determined for a given mid-span deflection l. the
corresponding deflected shape ~(() may be directly determined. Before the column is loaded,
the deflected shape is that of the assumed initial parabola. As the load is progressively
increased, ~«) becomes more sharply curved at midspan, approaching a triangular shape (with
local crimping at midspan) for very large deflections. It was found in simulations of several test
columns that the deflected shape is very closely approximated by a half sine wave as P
approaches the buckling load Pb' This noteworthy observation was found to be valid for all
imperfection amplitudes and column geometries investigated.

The combined effects of local and overall imperfections on the buckling load are shown in
Figs. 3(aHc) for a wide range of column geometries and imperfection amplitudes. The results
are plotted as a function of the geometric parameter PElPl. The ordinate is the ratio of the
buckling load of the imperfect column to that of the perfect column, Pco which is the smaller of
PB and Pl. The curves, therefore. directly express the reduction in strength due to the
imperfections. The curves in each figure correspond to the same local imperfection amplitude 8
and different overall imperfection amplitudes A.

Several trends may be observed in Figs. 3(aHc). Clearly, the buckling load is reduced as
either 8 or A is increased. The buckling load is most sensitive to imperfections when PB = PI'

In order to illustrate the relative sensitivity to local and overall imperfections, the contour
lines of constant strength reduction factor are plotted VS8 112 and 11112 in Fig. 4 for the most
sensitive case of PH =PI. The square roots are used because of the square-root dependence of
the buckling load for small imperfections. The buckling load is slightly more sensitive loA than
to 8.
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Fig. 3. Variation of buckling IQad with ratio of Euler (overall) to local buckling load. (a) I; or UJ; equals 0.01.
(b) 8 or 0'1; equals 0.1. (c)' 8 or 0'3 equals 1.0.
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Fig. 4. Interaction diagram for the combined effect of local and overall imperfections on the buckling load.

4. RITZ APPROXIMATION

In order to facilitate the analysis of random imperfections, a simplified approximate
technique for solving the boundary-value problem is desirable. The close similarity between the
exact deflection shape at buckling and a half sine wave observed·ip the preceding section leads
to the expectation that a single-term Ritz procedure would yield accurate values of the buckling
load.

The variational equivalent to the boundary-value problem of eqns (8HI0) is

where

8<1> =0 (17)

<I> =! t (_~ {[dU- ~O)]2 + [d(TJ -no)]2} + P(e+ 112)21 .~ ~ ~

_2s1
2-sl- 8l l:_S/-sl + SI~[I-P(I+2l:>r1 (18)

12 ~ 4y3 11 12P ~

+ 8z~ [1- P(1- ~ -11y3>r1 + S3~ [1- P(I- e+ 11Y3>r1) d'.
12P 12P

Let the deflection shapes be given by the aforementioned approximation

~= [sin.,

11 =11 sin.'
(19)

where [ and 11 represent the undetermined nondimensional midspan deflections in the x and y
directions respectively. Also, assume once again that the overall imperfection is a deterministic
parabolic deflection in the worst case direction with a midspan amplitude given by eqn (12).
Finally, wherever closed-form integration is not possible, the integral may be approximated by
dividing the length into N sub-intervals, evaluating the integrand at the midpoint of each
sub-interval, and summing. The result is

<1>= _!(PB-p)(f+ ii2)+~PBA[_~PBA2
4 P, • P, 3. P,

+24~ ~ {- (281J - 8~J - 8~J)sj - y(3)(8~j - S~i)Sj11

81Jr - - I 8i, - -+""?I.1- P(l +2eSi>r +~[1- P(l-~Sj-11"'jy3>r1
P P

+1fU-po-lSi + iiSiy3>rI} (20)
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. j-tl2
Sj=Stn~1T

(21)

Minimizing ell with respect to the undetermined parameters is accomplished by setting the
derivatives of ell with respect to land ii equal to zero. The resulting equations may be
expressed as

(
PE p-) - y3 f (il2 il2) y3 ~ 2 - - - -2p; - 11 =12N f:1 Q2i - U3i Sj +12N f=i Sj{- 82j{l- P(l- eSj -l1Sjy3)]

+ 8~i{l- po-lSi +iisiY3>r~. (23)

For given PEiP/> A, and 81j, eqns (22) and (23) can be solved by numerical techniques for the
one-dimensional continuum of values of P. land ii. Thus, in the manner described in the
previous section the entire load-deflection curve, and in particular the buckling load P/1' and
corresponding midspan deflections 6. and ii/1, may be obtained for a lattice column with
arbitrarily specified local imperfection amplitudes ~ij'

In the special case when each ~ij equals the same constant ~, the situation reduces to that of
uniform deterministic local imperfections. Equation (23) is then satisfied by setting ii =0 and
eqn (22) becomes

(24)

As a check on the accuracy of the Ritz approximate solution in this special case, the buckling
loads for several test columns with widely varying parameters were determined from eqn (24)
and compared with those obtained by the exact solution determined from eqn (16). For each
test column the error in the Ritz approximate solution was less than 0.5%. The approach can
therefore be used with confidence for the mote general problem of random imperfections.

5. AN AL YSIS FOR RANDOM LOCAL IMPERFECTIONS

Attention is now turned to the case in which the local imperfection amplitudes ~;j are
random variables. Although these imperfections are nonuniform over the length of any
particular column, the statistical properties can be expected to be invariant inasmuch. as the
material and fabrication techniques can be expected to be invariant for the three longerons and
various sections of the column. A situation of practical interest is the case in which the ~Ij are
considered to be independent samples of the same Gaussian random process. with zero mean
and standard deviation "a- It then follows that

(~ij)=ui (25)

where the brackets (.) represent the "expectation" or ensemble average.
Since the Sii are random variables, it follows that P, l/1 and iib are also random variables.

Thus, the objective of the following analysis is the determination of the statistical properties of
the resulting random buckling load Pb• One method of doing this would be to consider an
ensemble of test columns, determine the buckling load of each one, and then construct the
probability distribution for the buckling load. Such a Monte Carlo analysis was indeed
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performed, as is discussed in the next section. However, a more direct and less arduous method
of estimating the statistical properties is clearly desirable.

In order to approach the estimation of buckling-load statistics, consider l to be a specified
deterministic quantity. Then eqns (22) and (23) may be used to determine the random variables
P and ij in terms of l. In particular, the ensemble average and the standard deviation of P for
fixed l may be determined, at least in principle.

Select l to be that value for which the ensemble average of P is a maximum. Because the
load deflection curves (see Fig. 2) have broad maxima, the statistics of the load Pcorrespond
ing to this fixed value of l can be expected to be nearly the same as the statistics of the
buckling load Pb obtained by properly treating l as a random variable. The assumption is
therefore made that the desired results can be obtained by this fixed -l approach.

One characteristic of the Monte Carlo results reported later is that the loads for fixed l
fluctuate only slightly. This characteristic suggests that useful results can be obtained by
linearizing the governing equations (22) and (23) about the average values. Let

P = (P)+ q
(26)

and consider q, {3ii and ij to be small quantities, To zeroth order in these quantities eqn (23) is
identically zero and eqn (22) becomes exactly the same as eqn (24) with P replaced by (P) and
[; by us.

To first order, eqns (22) and (23) give

(28)

Taking expectations of these two equations (note that the coefficients on the left-hand side
are deterministic) yields the result that

q=ij=O

which is consistent with the linearization about the averages.
The foregoing discussion indicates that an estimator for the mean value of the buckling load

may be determined by analysis of the much simpler case of uniform deterministic imperfections
by choosing the deterministic imperfection amplitude [; to equal the standard deviation of the
random imperfection amplitudes UB- Therefore Figs. 3 and 4 can be used directly to estimate the
average buckling load for random imperfections.

In order to determine the degree of scatter of the buckling loads, an estimator is required for
the standard deviation of the buckling load U jib' Such an estimator can be obtained directly
from eqn (27) by squaring and averaging, while selecting l = ib and (P) = Pb, where Pb, ib are
determined from eqn (24) with [; = UB-

The averaging process requires the determination of ({3ii (3mn). In this analysis the quantities
[;ii and [;mn are taken to be statistically independent for j ~ n. This can be accomplished by
selecting the numerical-integration interval UN at least as large as the effective correlation
interval of the imperfection. In columns for which the longerons are pinned at each batten set,
the bay length I can be used. For columns with continuous longerons the correlation interval
may be several bays in length.
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Within the correlation interval, the value of (fjij fj"j) depends on whether Sij and 8"j are
considered to be independent of each other. If within the correlation interval each longeron is
assumed to have the same local imperfection, then

and

where

(29)

(30)

(31)

If, on the other hand, complete independence of the local imperfections is assumed

where

(32)

(33)

Equations (29) or (32) give the desired estimator for the standard deviation of the buckling
load. Values have been calculated for a large range of parameters and are shown in Table I for
both types of_independence. Note that the values of U Pb are at least an order of magnitude
smaller than Pb and usually over two orders of magnitude smaller.

6. MONTE CARLO SIMULATION

In order to guide the analysis and to assess the validity of the estimators derived in the
preceding section, a Monte Carlo simulation study was performed. Considered in the study
were a broad range of material and geometric parameters PE and l'I, and deterministic overall
imperfection A. For each set of values of these parameters an ensemble of 200 lattice columns
were selected by choosing the set of local imperfection amplitudes 81j =82j = 83j (j =
1,2,3, ... N) for each column to be different independent samples of the same Gaussian
random process with zero mean and standard deviation Ua. In every case N was chosen as 225.
An ensemble of Ritz approximate solutions for the buckling loads were then determined from
eqn (22) for a wide range of random local imperfection amplitudes. The results for the mean
values of the buckling loads are shown as enlarged circles in Figs. 3(aHc). The agreement with
the results for uniform deterministic imperfections is very good.

The means and standard deviations obtained from the Monte Carlo simulations are given in
Table 2. One meaningful way to compare these results with the predictions of the estimators
(Table 1) is by determining the minimum (3 - u) buckling load, i.e. the load which can be
exceeded without buckling in approx. 99.9% of the sample columns within an ensemble, and
which is often sought in statistical structural design. On this basis the estimator technique is
accurate to within 1.5% for all cases. The direct estimators are therefore valid and useful.

7. CONCLUSIONS

An analysis is presented for determining the combined effects of local and overall imper
fections on the buckling load of triangular lattice columns. The imperfections considered are
due to an initial curvature of the local compression members and the overall column axis. In a
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Table I. Mean and standard deviation of the buckling load as predicted by the statistical estimators

t:. PE/Pt
cr- cr-cro <Ph> Ph Ph

E<ln (24) Eon (29) Eon {32\

0.01 0.01 0.5 0.490 0.000174 0.00176
0.01 0.01 1.0 0.845 0.00193 0.00207
0.01 0.01 1.5 0.916 0.00187 0.00211
0.01 0.01 2.0 0.932 0.00161 0.00182
0.01 0.10 0.5 0.436 0.000390 0.000390
0.01 0.10 1.0 0.666 0.00124 0.00125
0.01 0.10 1,5 0.748 0.00150 0.00151
0.01 0.10 2.0 0.782 0.00145 0.00146
0.01 1.00 0.5 0.248 0.000193 0.000193
0.01 1.00 1.0 0.313 0.000349 0.000348
0.01 1.00 1.5 0.340 0.000426 0.000426
0.10 0.01 0.5 0.461 0.00222 0.00281
0.10 0.01 1.0 0.704 0.00616 0.00904
0.10 0.01 1.5 0.777 0.00611 0.0103
0.10 0.01 2.0 0.809 0.00559 0.00928
0.10 0.10 0.5 0.399 0.00243 0.00252
0.10 0.10 1.5 0.651 0.00509 0.00546
0.10 0.10 2,0 0.687 0.00504 0.00543
0.10 1.00 0.5 0.226 0.00154 0.00153
0.10 1.00 1,0 0.285 0.00195 0.00195
0.10 1.00 1.5 0.314 0.00198 0.00198
0.10 1.00 2.0 0.328 0.00202 0.00202
1.00 0.01 0.5 0.233 0.00912 0.0207
1.00 0.01 1.5 0.396 0.0129 0.0330
1.00 0.01 2.0 0.440 0.0131 0.0342
1.00 0.10 0.5 0.195 0.00782 0.00942
1.00 0.10 1.0 0.285 0.0102 0.0131
1.00 0.10 1.5 0.340 0.0111 0.0145
1.00 0.10 2.0 0.377 0.0114 0.0149
1.00 1.00 0.5 0.123 0.00441 0.00425
1.00 1.00 1.0 0.166 0.00525 0.00517
1.00 1.00 1.5 0.191 0.00554 0.00549
1.00 1.00 2.0 0.208 0.00563 0.00561

Table 2. Mean and standard deviation of the buckling load as predicted by Monte Carlo simulation

cro t:. P!i:"Pt <Ph>
cr-

P
b

0.01 0.01 0.5 0.490 0.000177
0.01 0.01 1.0 0.846 0.00185
0.01 0.01 1.5 0.916 0.00181
0.01 0.01 2.0 0.933 0.00156
0.01 0.10 0.5 0.436 0.000432
0.01 0.10 1.0 0.665 0.00123
0.01 0.10 1.5 0.747 0.00143
0.01 0.10 2.0 0.782 0.00141
0.01 1.00 0.5 0.249 0.000386
0.01 1.00 1.0 0.313 0.000511
0.01 1. 00 1.5 0.340 0.000532
0.10 0.01 0.5 0.462 0.00207
0.10 0.01 1.0 0.705 0.00588
0.10 0.01 1.5 0.778 0.00575
0.10 0.01 2.0 0.810 0.00529
0.10 0.10 0.5 0.399 0.00232
0.10 0.10 1.5 0.652 0.00487
0.10 0.10 2.0 0.688 0.00478
0.10 1.00 0.5 0.227 0.00151
0.10 1.00 1.0 0.287 0.00189
0.10 1.00 1.5 0.314 0.00197
0.10 1.00 2.0 0.329 0.00196
1.00 0.01 0.5 0.224 0.00854
1.00 0.01 1.5 0.398 0.0123
1.00 0.01 2.0 0.442 0.0125
1.00 0.10 0.5 0.196 0.00734
1.00 0.10 1.0 0.287 0.00975
1.00 0.10 1.5 0.341 0.0105
1.00 0.10 2.0 0.379 0.0108
1.00 1.00 0.5 0.123 0.00415
1.00 1.00 1.0 0.167 0.00498
1.00 1.00 1.5 0.192 0.00522
1.00 1.00 2.0 0.209 0.00530
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preliminary deterministic analysis, the case of uniform local imperfections is investigated. In
particular, results are presented for the dependence of the deterministic buckling load on the
various material, geometric and imperfection parameters.

An approximate analysis for the more general case of random local imperfections is
developed on the basis of a single-term Ritz approach. Based on this analysis, an estimator for
the mean value of the random buckling load is presented. This estimator turns out to be
identical with the buckling load of a comparison column with uniform deterministic local
imperfections, provided that the amplitude of local imperfections in the comparison column is
set equal to the standard deviation of random local imperfections.

In order to evaluate the statistical scatter of the buckling load, two estimators for its
standard deviation are developed from a linearization about the mean value. The predictions of
the estimators for the mean and standard deviation of the random buckling load are presented
for various material, geometric and imperfection parameters.

Also presented are the results of a Monte Carlo simulation study used to assess the validity
of the simplified statistical estimators. From a comparison of the results of the Monte Carlo
simulation and the Ritz approximate analysis, it is concluded that the estimators provide an
accurate basis for predicting the minimum (3 - 0') buckling load for use in probabilistic
structural design.

Although consideration has been confined in this paper to triangular lattice columns, the
basic approach could be successfully applied to a variety of imperfection-sensitive structures.
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